
Audio Watermarking
The audiowmark program can add watermarks to audio files and extract previously embedded watermarks
from audio material. The usage is as follows:

usage: audiowmark <command> [<args>...]

Commands:
* create a watermarked wav file with a message

audiowmark add <input_wav> <watermarked_wav> <message_hex>

* retrieve message
audiowmark get <watermarked_wav>

* compare watermark message with expected message
audiowmark cmp <watermarked_wav> <message_hex>

* generate 128-bit watermarking key, to be used with --key option
audiowmark gen-key <key_file> [--name <key_name>]

Global options:
-q, --quiet disable information messages
--strict treat (minor) problems as errors

Options for get / cmp:
--detect-speed detect and correct replay speed difference
--detect-speed-patient slower, more accurate speed detection
--json <file> write JSON results into file

Options for add / get / cmp:
--key <file> load watermarking key from file
--short <bits> enable short payload mode
--strength <s> set watermark strength [10]

--input-format raw use raw stream as input
--output-format raw use raw stream as output
--format raw use raw stream as input and output

The options to set the raw stream parameters (such as --raw-rate
or --raw-channels) are documented in the README file.

HLS command help can be displayed using --help-hls

1

Audiowmark Architecture
The audiowmark program is used to integrate (add command) and extract (get command) watermarks
(messages of up to 128 bits) into/from audio files.

Internally, the program is organized as nested components, the outermost deals with file IO and command
processing. The commands are implemented via various components that process the watermark, audio signal,
an optional encoding key and user facing information.

Adding Watermarks
The audiowmark add <in> <out> <bits> [--key...] command allows adding watermarks to audio files.
This command takes an audio file, a 128-bit hexadecimal watermark and an optional key as input, it combines
these into a newly generated WAV file. Using the same key, the watermark bits can later be re-retrieved with the
audiowmark get command without requiring access to the original audio input (this is called blind decoding).

By using the encoding key as input, various AES based random number streams are generated to shuffle,
interleave and mix the watermark information into the audio signal.

For robust extraction and forward error correction, the watermark is encoded via convolutional codes with an
order of 15 and a rate of 1/6 (similar to the communication of the Mars Pathfinder).

The expanded watermark bits are transformed into a delta spectrum at a sample rate of 44100Hz and distributed
across various segments (of ca 23 millisecond lengths) of the audio signal and spread across bands above 800Hz
and below 5000Hz. Based on the delta spectrum, the watermark signal can be modulated and adapted to the
current segment of the input signal before the two are mixed together. To avoid clipping of the output signal,
the final output stage consists of a time local limiter with ca 1 second window.

2

https://en.wikipedia.org/wiki/Convolutional_code#Popular_convolutional_codes

An outline of the component interactions to integrate the watermark information via delta band spectrum into
the audio signal is provided in the following chart.

audiowmark add <AudioInput> <AudioOutput> <Bits> [--key…]

 Watermark Generation

 Watermark Bits

Modulation Frame Generator
• Encodes Watermark Bits
• Pregenerate A/B-Blocks
• Yields A/B-Block frames

 WAV/MP3 Audio Input File

Resample to 44.1kHz

Mixing ⊕ Limiting
• Audio and watermark signals are added
• The result is scaled down to [-0.99…+0.99]
• Uses 1 second detection window

Power Measurement
• Signal Power
• Delta Power
• Ratio Calculation

 Key

Random Stream
 AES128/CTR

Fourier Transform Analyzer
• Input: Time domain samples
• FFT with block Size 1024
• Hann Window

Band Modulation ⊗
• Input bands are Up/Down modulated
• Factor amounts to ±Amplitude^1%
• Output: ± Delta bands

Up/Down-Band Modulators

Watermark Signal Synthesis
• Inverse FFT with block size 1024
• Cosine window with overlap of 10%
• Output: Time domain samples

FFT Delta Bands

Resample from 44.1kHz

 513 FFT Bands

 WAV Audio Output File Signal/Noise Ratio Info

At a sample frequency of 44100Hz, the audio signal used for the watermark creation is split into “Frames” of 1024
samples each, which corresponds to segments of ca 23 millisecond length. These frames are transformed from
the time domain (samples) into the frequency domain (spectral bands) and vice versa to apply the watermark
embedding in certain spectral bands.

Data and synchronization bits are encoded across several frames, with different levels of redundancy. In the
“Modulation Frame Generator” the number of frames that compose all encoded information needed to find and
extract the watermark bits are combined into two types of “Blocks”.

3

A detailed chart of the component interactions for the Frame and Block generation in the “Modulation Frame
Generator” is provided in the next chart.

 Modulation Frame Generator

Random Stream
AES128/CTR
Streams R1…R6

Convolutional Code Parameters
• Convolutional code with rate 1/6
• Order 15, needs 15 termination bits
• Six constants for A-Block and B-Block
• Forward correction of ca ≈20% bit errors
• Encodes 128 bits in 858 bit blocks

 Watermark Bits

Convolutional Code Expansion
• Pads watermark with termination zeros
• Combines bit stream with A/B constants
• Generates output stream of encoded bits
• Generates 858 encoded bits A-Block
• Generates 858 encoded bits B-Block

Randomize Bit Order for ENCODE
• Reversible shuffle for encode/decode
• Shuffles/interleaves bit stream [R5]
• Interleaving improves robustness
• Reduces bit stream damage impact

Synchronization Frame Generator
• Encodes 6 sync bits in 6 * 85 frames
• A-Block bit pattern: 010101
• B-Block bit pattern: 101010
• Randomizes Up/Down-Band shifts [R2]
• Output: 510 Frames * 60 Up/Down-Bands

A/B-Block Frame Modulator Composition
• Interleaves synchronization and data frames
• Pulls and interleaves each block type separately
• Output: Up/down band modulators for 1 block

Data Frame Generator
• Encodes 858 data bits in 858 * 2 frames
• Encodes A-Blocks, B-Blocks in turn
• Omits Mix Entry Generator with --linear
• Randomizes Up/Down-Band shifts [R1]
• Output: 1716 Frames * 60 Up/Down-Bands

Modulation Frame Selector
• Yields A-Block band modulators per frame
• Yields B-Block band modulators and starts over
• Output: Up/down band modulators for 1 frame

Frame Up/Down-Band Modulators

Up/Down-Band Generator
• Uses per-frame shuffling seed
• Picks random bands, 30 UP, 30 DOWN
• Bands are between ca 861Hz…4307Hz

Mix Entry Generator (skipped for --linear)
• Generates list of data bit encoding bands
• Uses 30 up + 30 down bands in 2 frames per bit
• Randomizes Up/Down-Band shifts [R1]
• Shuffles data bit association of entries [R4]
• Output: 2 * 858 * 30 Up/Down band pairs

Frame Position Randomization
• Mixes sync + data frames
• Shuffles frame positions
• Uses random stream [R6]

The watermark is encoded and embedded into the audio signal in two block types, A-Blocks and B-Blocks. The
information contained in each block alone is usually sufficient to extract the watermark. However, in case of
very distorted and noisy transmissions where watermark extraction from either block type fails, a combination
of segments with A-Block and B-Block data may still lead to successful recovery of the original watermark.

In order to support watermark extraction from clipped excerpts of the input stream, a fixed pattern of
synchronization bits is integrated into the data blocks with much higher redundancy than the data bits. The
fixed pattern allows detection of the location of A-Blocks and B-Blocks as such to aid the watermark extraction.

The user provided encoding Key seeds an AES based pseudo random number generator in Counter Mode that is
used to determine encoding places, randomize the noise introduced by the watermark and to interleave encoding

4

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CTR

for robustness. Without the key, the watermark information cannot be retrieved. Using a key is important
because the implementation itself is open source, and being able to read the watermark message bits would allow
an attacker to remove the watermark without degrading the audio quality.

The different types of random data streams used for the distribution of the embedded watermark information
are as follows:

• R1 - Used to randomizes Up/Down band shifts for watermark data bits.
• R2 - Used to randomizes Up/Down band shifts for watermark synchronization bits.
• R3 - Currently unused.
• R4 - Used to mix (shuffle) data bit associations of Up/Down bands distributed across several frames.
• R5 - Used to shuffle (interleave) the bit stream. Due to redundancy in the generated bit stream, interleaving

reduces the number of adversely affected bits by bursts (holes) in transmission loss.
• R6 - Used to randomize and mix data frames with synchronization frames, this makes synchronization

frames unlikely to be detectable without the encoded key.

Extracting Watermarks
The audiowmark get <watermarked_wav> [--key...] command extracts a watermark from an audio file.
This command takes an audio file and an optional key as input. With the same key used during watermark
embedding, synchronization bits are determined and searched for in the audio content. If synchronization bit
matches are detected, encoded watermark information can be located, extracted and decrypted with error
correction. The retrieval does not require access to the original audio input (this is called blind decoding). The
detection results are produced on stdout with accompanying information about the location, match quality and
a measure for likely decoding errors.

An outline of the component interactions to locate and extract the watermark information from the frequency
spectrum in the audio signal is provided in the following charts.

5

audiowmark get <AudioFile> [--key…]

 Watermark Extraction

 WAV/MP3 Audio Input File

Resample to 44.1kHz

 Key

Random Stream
 AES128/CTR

Fourier Transform Analyzer
• Input: Frames with time domain samples
• Short inputs are zero-padded as needed (Mode::CLIP)
• FFT with block Size 1024
• Hann Window
• Output: 513 FFT Bands

Soft-Decision Decoder
• Utilize Viterbi algorithm
• Decode blocks of 858 encoded bits
• Reconstructs 128 payload bits
• Uses 'Convolutional Code Parameters'
• Decode A-, B- and AB-Blocks

Synchronization Position Finder
• Performs coarse search for synchronization
 bit markers in the frequency spectrum
• Searches for A/B-Block synchronizations
• Calculates score for possible locations
 and picks the 5 best matches
• Refines the exact block locations with a fine
 grained search for synchronization markers
• Short audio segments are dealt with by
 adding zero padding (in Mode::CLIP)

Result Set Printing
• Sort results by block type and score
• Print potential watermarks on stdout
• Provide time offset, score quality,
 block type and a measure for likely
 decoding errors per watermark

 Watermark Bits

Best Block Decoder
• Detect A/B-Blocks via 'Synchronization Position Finder' in Mode::BLOCK
• Only works for audio clips with at least 52 seconds and proper block
 alignment (or up from 104 seconds without alignment)
• Reconstruct Up/Down-Band associations (reverses 'Mix Entry Generator') [R4]
• Estimate bit vectors resulting from average deviations in
 randomized Up/Down-Band shifts [R1]
• Unshuffle bit order (reverses 'Randomize Bit Order for ENCODE') [R5]
• Normalize soft bits (normalization of estimated bit vectors)
• Reconstruct watermark bits using 'Soft-Decision Decoder'
• Decode individual A-Blocks, B-Blocks and if present AB-Blocks
• As last resort, attempt an AB-Block decode on accumulated bit vectors
 averaged over all selected blocks

Short Audio Clip Decoder
• Used only for small audio clips up to 160 seconds (3.1 blocks)
• Uses zero padding (silence) around short audio clips to construct 3 blocks
• Zero padded regions are ignored during synchronization detection and scoring
• Determine alignment with 'Synchronization Position Finder' in Mode::CLIP
• Select the five blocks with the best detected synchronization markers
• Reconstruct Up/Down-Band associations (reverses 'Mix Entry Generator') [R4]
• Estimate bit vectors resulting from average deviations in
 randomized Up/Down-Band shifts [R1]
• Unshuffle bit order (reverses 'Randomize Bit Order for ENCODE') [R5]
• Normalize soft bits (normalization of estimated bit vectors)
• Reconstruct watermark bits using 'Soft-Decision Decoder'
• Attempt AB-Block decoding at alignment position
• Attempt secondary AB-Block decoding in case of audio data surplus
• In practice, ca 10 seconds are needed for reliable detection,
 in good scenarios up to 3 seconds may suffice

Mode::BLOCK

Mode::CLIP

At a sample frequency of 44100Hz, a spectral analysis is performed on the audio signal and the spectrum is
then searched for known synchronization markers. Upon detection of A/B-Block synchronization positions,

6

watermark bits are extracted from known data bit locations, while making use of the embedded redundancy
to make the detection more robust. Due to high redundancy and wide spread of watermark information, bits
often can still be extracted from audio clips that are heavily shortened. To employ the full detection machinery
to very short clips, symmetric zero padding is used to provide enough input samples (zero padded regions are
ignored during scoring however).

Since detection success is directly dependent on the precise bit stream synchronization, an iterative process is
used for fast approximation of synchronization locations with later refinements to yield precise results.

The purpose of the synchronization algorithm is to find the location of the watermark A/B blocks in the input
signal. This is important because the signal may have been cropped so that the location of the blocks is not
known. To be able to find the locations of the blocks, while adding the watermark, some sync bits are added to
each block with relatively high redundancy. The values of these sync bits are known, for an A block they are
010101, for a B block they are 101010. The up- and down-bands used for the sync bits and offsets of all frames
that belong to sync bits inside the A / B block are known and determined by the key.

To perform the actual synchronization and locate the start of an A (or B) block, two steps are performed.

• As a first step, the synchronization algorithm tests all possible positions for the start of an A (or B) block
using a step size of 256 (1/4 frame size) and tries to decode the sync bits at the expected locations relative
to the start of the block. Since the values and locations of the bits are known, a sync score can be computed
that indicates how good the bits in the actual audio input at this position match the expected bit sequence.

• For all start locations with a significantly high sync score, in a second step the actual start position is
searched by trying all different start locations near to the original match with a smaller finer step size.
Again a sync score can be computed and compared to a second threshold to decide whether this is location
is really likely to contain a data block. If the match is good enough the start location will be used to
decode the data bits in the block.

Besides using this strategy to find “whole” data blocks, there is also a variant of the synchronization algorithm
that is used if the audio signal is very short. It can find the location of the watermark even if the length of the
input signal is too short to contain a complete data block. To be able to do this, the input signal is zero padded
before sync detection and then the usual algorithm to find whole blocks is used.

The following chart provides the detail of the steps involved in determining the synchronization locations.

7

Synchronization Position Finder

WAV/MP3 Audio Input File

Resampled to 44.1kHz

Fourier Transform Analyzer
• Input: Time domain samples
• FFT with block Size 1024
• Hann Window
• Output: 513 FFT Bands

Random Stream
AES128/CTR
Streams R1…R6

Frame Position Randomization
• Mixes sync + data frames
• Shuffles frame positions
• Uses random stream [R6]

Decibel Quantifier
• Uses coarse stepping of 256 values for approximate search
• A stepping of 256 equates 1/4th FFT block
• Uses fine stepping of 8 values for refined search
• Pulls FFT Bands for all input blocks
• Computes dB for all bands of all blocks

Synchronization Bit Frame Generator
(Mode::BLOCK & Mode::CLIP)
• Generates 6 sync bits in 6 * 85 frames (* 2 for Mode::CLIP)
• Randomizes Up/Down-Band shifts [R2]
• Sorts synchronization bit frames by frame index
• Mode::BLOCK Output: 510 Bit Frames with 60 Up & 60 Down-Bands
• Mode::CLIP Output: 1020 Bit Frames with 60 Up & 60 Down-Bands

Approximate Synchronization Frame Search
• Skips over zero-padded samples (Mode::CLIP)
• Computes multiple time-shifted FFT vectors
• Uses coarse subframe stepping of 256 values
• Overlaps frames for sync detection by 1/4th frame
• Scores positions for synchronization matches

Refined Synchronization Frame Search
• Computes fine-stepped time-shifted FFT vectors around selected frames
• Searches ±16 subframes around previously detected good scores
• Keeps subframe if the score (synchronization frame detection quality) improves

 Refining
 Feedback

Synchronization Bit Matching
• Collect Up/Down-Band magnitudes for sync bits
• Determine match quality for alternating bit patterns
• Apply watermark strength dependent thresholds
• Decide A/B-Block based on 010101 / 101010 detection

Repeat
Refined

Synchronization Frame Selection
• Due to the subframe stepping, good and bad matches can be expected to alternate
• Identification of local match maxima
• Strength dependent threshold determines minimum match quality
• Selection of likely match positions via maxima and threshold

Scoring and A/B-Type for potential blocks

Repeat
Refined

Up/Down-Band Generator
• Uses per-frame shuffling seed
• Picks random bands, 30 UP, 30 DOWN
• Bands are between ca 861Hz…4307Hz

The user provided 128-Bit AES key is essential to determine spectral bands, encoding patterns, and bit locations.
During decoding, the same Pseudo Random Number Generator sequences R1. . . R6 are used that facilitated
watermark embedding. By using the same AES key and a cryptographically secure PRNG, the sequences are
uniformly distributed and deterministically reproducible but cannot be extrapolated. This prevents watermark

8

extraction or modification by anyone without possession of the exact encoding key.

The Patchwork Algorithm

Figure 1: Example Spectrum

To store one single bit inside a spectrum, audiowmark uses the patchwork algorithm. From the frequency
bands of the spectrum (generated by computing the FFT of one frame), two groups are choosen in the frequency
range of the watermark using the pseudo random number generator. These are called up- and down-bands. In
the example above, the up-bands are red and the down-bands are green. Typically there are 30 up- and 30
down-bands and the other bands do not carry information.

To embed a single bit, the following changes are made to the spectrum:

• to store a 1 bit, each magnitude of each up-band is increased by a small amount, and each magnitude of
each down-band is decreased by a small amount (this is shown by the small arrows in the example image)

• to store a 0 bit, each magnitude of each up-band is decreased, and each magnitude of each up-band is
increased (the opposite of the small arrows in the example image)

Since we have pseudo-randomly choosen the up- and down-bands from the spectrum, we can expect that if we
sum up all values of the up-bands and sum up all values of the down-bands before embedding the bit, we will
get a similar result (because the mean value of all spectrum bins is shared between the two).

However, since we increased all elements of the up-bands and decreased all elements of the down-bands after
embedding a 1 bit, the sum of the up-bands should be greater than the sum of the down-bands.

So to decode the bit from the spectrum, we can simply use the rule

• decode as 1 bit, if the sum of the up-bands is greater than the sum of the down-bands

• decode as 0 bit, if the sum of the up-bands is smaller than the sum of the down-bands

In the actual implementation, increasing/decreasing the magnitude of the up-/down-bands is done by generating
a watermark signal with the right magnitude/phase for each frame that only contains the changes. So we
compute a delta spectrum, which is then passed to the IFFT, windowed and then added to the original audio, so
that the sum has the desired modified spectrum magnitude.

The detection is performed on dB values of the magnitudes of the spectrum obtained from the FFT, so the sums
of the dB values of up-/down-bands are computed and compared to decide whether a 0 bit or 1 bit was received.

9

The patchwork algorithm does not guarantee that encoding/decoding will always yield the right result at the
lowest level of embedding/decoding one bit (as the difference of the up-/down-bands can be too big before
embedding due to the original signal). However error correction and redundancy by embedding a bit in more
than one frame makes the whole process reliable at a higher level.

There are three improvements over the basic patch work algorithm described above, which make the watermark
detection more accurate:

• To use soft-decoding for the convolutional decoder, instead of deciding whether a 0 or 1 bit was received
by comparing the two sums directly before decoding the convolutional code to obtain the message bits, the
difference between the two sums is normalized and is used as a soft-bit input for the Viterbi algorithm.

• Instead of storing one data bit in each frame spectrum, a data bit uses up- and down-bands from different
frames. This is called mix-encoding, which spreads the information of each data bit over many frames.

• As described above, the original signal can have some negative effect on the performance of the decoder,
since the sum of the up-bands and the sum of the down-bands will be different even before embedding
the bits. To make detection more reliable, the original signal level for each bin is estimated by taking the
average value of the previous and next spectrum and subtracted before computing the sum of the up- and
down-bands.

Mixing with Limiter
The input material for audiowmark is normalized (all samples are in the range from -1 to 1). If we simply
added the watermark to the input, it could happen that this sum exceeds the range from -1 to 1 which would
result in clipping. To avoid this, a limiter during mixing is used.

The limiter computes the highest peak for each one second long block. Then a linear volume envelope is
constructed connecting the blocks, such that the envelope is greater or equal to the height of the peaks in each
block. The typical value for really high peaks is about 1.04 for the default watermarking strength of 10.

To avoid clipping, the signal is divided by the slowly changing volume envelope. The result is somewhat similar
to a lookahead peak limiter with attack of one second, and linear release of one second. Or to describe the
effect more directly, if a single peak of 1.04 was produced in the watermarked signal, the limiter would slowly
start decreasing the volume to 1/1.04 over the time of one second before the block that contains the peak, stay
there for a while (due to the use of blocks) and afterwards slowly increase the volume again over the time of one
second.

By using a limiter that works on one second blocks like this, it is possible to seek to any point in the watermark
(which is required for streaming via HLS) and getting the exact same output that watermarking all previous
samples would have produced, because the output of the limiter only depends on the current, previous and next
one second block. So only a small context window needs to be processed when seeking.

Speed Detection
As one of the later developments, a dedicated speed detection facility has been integrated that explores the
ability to extract watermarks from audio segments played back at unknown rates. In scenarios where audio has
been resampled and pitched at a constant rate, synchronization markers may still be detectable by searching the
audio content at varying resampled playback rates.

The audiowmark --detect-speed command line option attempts to detect playback rate changes compared to
the original material used for embedding within 80% to 125%.

Detection of playback rate modifications is approached in several steps. First, the detector picks two short audio
clips (ca 25 seconds) with high signal energy and performs multiple coarse scans while detecting <0.2% rate
modulations. This rough speed estimate is improved upon with secondary scans around 1/20‰ rate modulations
on an audio clip of 50 second.

Executing coarse and fine detection runs at varying resampled playback rates with multiple refining steps
consumes a lot of processing resources. To speed up the detection, resampling and scanning runs are carried out
on a downsampled version of the audio material (by a factor of 2) and detection runs are parallelized across all
available CPU cores.

Finally, the watermark extraction is carried out on a resampled version of the audio material at the most likely
detected playback rate in addition to regular watermark detection, because the detected playback rate may have
been guessed wrongly.

10

	Audio Watermarking
	Audiowmark Architecture
	Adding Watermarks
	Extracting Watermarks
	The Patchwork Algorithm
	Mixing with Limiter
	Speed Detection

